[1057] 校园自行车分配
- GitHub
- http://leetcode.xuezhisd.top/post/11e73bb6.html
- https://leetcode.com/problems/campus-bikes
- https://leetcode-cn.com/problems/campus-bikes
题目描述
在由 2D 网格表示的校园里有 n
位工人(worker
)和 m
辆自行车(bike
),n <= m
。所有工人和自行车的位置都用网格上的 2D 坐标表示。
我们需要为每位工人分配一辆自行车。在所有可用的自行车和工人中,我们选取彼此之间曼哈顿距离最短的工人自行车对 (worker, bike) ,并将其中的自行车分配給工人。如果有多个 (worker, bike) 对之间的曼哈顿距离相同,那么我们选择工人索引最小的那对。类似地,如果有多种不同的分配方法,则选择自行车索引最小的一对。不断重复这一过程,直到所有工人都分配到自行车为止。
给定两点 p1
和 p2
之间的曼哈顿距离为 Manhattan(p1, p2) = |p1.x - p2.x| + |p1.y - p2.y|
。
返回长度为 n
的向量 ans
,其中 a[i]
是第 i
位工人分配到的自行车的索引(从 0 开始)。
示例 1:
输入:workers = [[0,0],[2,1]], bikes = [[1,2],[3,3]] 输出:[1,0] 解释: 工人 1 分配到自行车 0,因为他们最接近且不存在冲突,工人 0 分配到自行车 1 。所以输出是 [1,0]。
示例 2:
输入:workers = [[0,0],[1,1],[2,0]], bikes = [[1,0],[2,2],[2,1]] 输出:[0,2,1] 解释: 工人 0 首先分配到自行车 0 。工人 1 和工人 2 与自行车 2 距离相同,因此工人 1 分配到自行车 2,工人 2 将分配到自行车 1 。因此输出为 [0,2,1]。
提示:
0 <= workers[i][j], bikes[i][j] < 1000
- 所有工人和自行车的位置都不相同。
1 <= workers.length <= bikes.length <= 1000
Related Topics
题目解析
- [请一句话描述题目…]
不确定性
方法一:[算法名称]
分析
思路
注意
知识点
复杂度
代码
1 | // |
方法二:[算法名称]
分析
思路
注意
知识点
复杂度
代码
1 | // |