0%

[0873] 最长的斐波那契子序列的长度

[0873] 最长的斐波那契子序列的长度

题目描述

如果序列 X_1, X_2, ..., X_n 满足下列条件,就说它是 斐波那契式 的:

  • n >= 3
  • 对于所有 i + 2 <= n,都有 X_i + X_{i+1} = X_{i+2}

给定一个严格递增的正整数数组形成序列,找到 A 中最长的斐波那契式的子序列的长度。如果一个不存在,返回  0 。

(回想一下,子序列是从原序列 A 中派生出来的,它从 A 中删掉任意数量的元素(也可以不删),而不改变其余元素的顺序。例如, [3, 5, 8] 是 [3, 4, 5, 6, 7, 8] 的一个子序列)

 

示例 1:

输入: [1,2,3,4,5,6,7,8]
输出: 5
解释:
最长的斐波那契式子序列为:[1,2,3,5,8] 。

示例 2:

输入: [1,3,7,11,12,14,18]
输出: 3
解释:
最长的斐波那契式子序列有:
[1,11,12],[3,11,14] 以及 [7,11,18] 。

 

提示:

  • 3 <= A.length <= 1000
  • 1 <= A[0] < A[1] < ... < A[A.length - 1] <= 10^9
  • (对于以 Java,C,C++,以及 C# 的提交,时间限制被减少了 50%)

Related Topics
  • 数组
  • 动态规划
  • 题目解析

    • [请一句话描述题目…]

    不确定性

    方法一:[算法名称]

    分析

    思路

    注意

    知识点

    复杂度

    代码

    1
    //

    方法二:[算法名称]

    分析

    思路

    注意

    知识点

    复杂度

    代码

    1
    //

    相关题目