0%

[0544] 输出比赛匹配对

[0544] 输出比赛匹配对

题目描述

在 NBA 季后赛中,我们总是安排较强的队伍对战较弱的队伍,例如用排名第 1 的队伍和第 n 的队伍对决,这是一个可以让比赛更加有趣的好策略。现在,给你 支队伍,你需要以字符串格式输出它们的 最终 比赛配对。

n 支队伍按从 1 到 n 的正整数格式给出,分别代表它们的初始排名(排名 1 最强,排名 n 最弱)。我们用括号('(', ')')和逗号(',')来表示匹配对——括号('(', ')')表示匹配,逗号(',')来用于分割。 在每一轮的匹配过程中,你都需要遵循将强队与弱队配对的原则。

 

示例 1:

输入: 2
输出: (1,2)
解析: 
初始地,我们有队1和队2两支队伍,按照1,2排列。
因此 用 '(', ')' 和 ','来将队1和队2进行配对,得到最终答案。

示例 2:

输入: 4
输出: ((1,4),(2,3))
解析: 
在第一轮,我们将队伍1和4配对,2和3配对,以满足将强队和弱队搭配的效果。得到(1,4),(2,3).
在第二轮,(1,4) 和 (2,3) 的赢家需要进行比赛以确定最终赢家,因此需要再在外面加一层括号。
于是最终答案是((1,4),(2,3))。

示例 3:

输入: 8
输出: (((1,8),(4,5)),((2,7),(3,6)))
解析: 
第一轮: (1,8),(2,7),(3,6),(4,5)
第二轮: ((1,8),(4,5)),((2,7),(3,6))
第三轮 (((1,8),(4,5)),((2,7),(3,6)))
由于第三轮会决出最终胜者,故输出答案为(((1,8),(4,5)),((2,7),(3,6)))。

 

注意:

  1. 的范围是 [2, 212].
  2. 保证 n 可以写成 2k 的形式,其中 k 是正整数。

 

Related Topics
  • 递归
  • 字符串
  • 题目解析

    • [请一句话描述题目…]

    不确定性

    方法一:[算法名称]

    分析

    思路

    注意

    知识点

    复杂度

    代码

    1
    //

    方法二:[算法名称]

    分析

    思路

    注意

    知识点

    复杂度

    代码

    1
    //

    相关题目