[0749] 隔离病毒
- GitHub
- http://leetcode.xuezhisd.top/post/e691304a.html
- https://leetcode.com/problems/contain-virus
- https://leetcode-cn.com/problems/contain-virus
题目描述
病毒扩散得很快,现在你的任务是尽可能地通过安装防火墙来隔离病毒。
假设世界由二维矩阵组成,0
表示该区域未感染病毒,而 1
表示该区域已感染病毒。可以在任意 2 个四方向相邻单元之间的共享边界上安装一个防火墙(并且只有一个防火墙)。
每天晚上,病毒会从被感染区域向相邻未感染区域扩散,除非被防火墙隔离。现由于资源有限,每天你只能安装一系列防火墙来隔离其中一个被病毒感染的区域(一个区域或连续的一片区域),且该感染区域对未感染区域的威胁最大且保证唯一。
你需要努力使得最后有部分区域不被病毒感染,如果可以成功,那么返回需要使用的防火墙个数; 如果无法实现,则返回在世界被病毒全部感染时已安装的防火墙个数。
示例 1:
输入: grid = [[0,1,0,0,0,0,0,1], [0,1,0,0,0,0,0,1], [0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0]] 输出: 10 说明: 一共有两块被病毒感染的区域: 从左往右第一块需要 5 个防火墙,同时若该区域不隔离,晚上将感染 5 个未感染区域(即被威胁的未感染区域个数为 5); 第二块需要 4 个防火墙,同理被威胁的未感染区域个数是 4。因此,第一天先隔离左边的感染区域,经过一晚后,病毒传播后世界如下: [[0,1,0,0,0,0,1,1], [0,1,0,0,0,0,1,1], [0,0,0,0,0,0,1,1], [0,0,0,0,0,0,0,1]] 第二题,只剩下一块未隔离的被感染的连续区域,此时需要安装 5 个防火墙,且安装完毕后病毒隔离任务完成。
示例 2:
输入: grid = [[1,1,1], [1,0,1], [1,1,1]] 输出: 4 说明: 此时只需要安装 4 面防火墙,就有一小区域可以幸存,不被病毒感染。 注意不需要在世界边界建立防火墙。
示例 3:
输入: grid = [[1,1,1,0,0,0,0,0,0], [1,0,1,0,1,1,1,1,1], [1,1,1,0,0,0,0,0,0]] 输出: 13 说明: 在隔离右边感染区域后,隔离左边病毒区域只需要 2 个防火墙了。
说明:
grid
的行数和列数范围是 [1, 50]。-
grid[i][j]
只包含0
或1
。 - 题目保证每次选取感染区域进行隔离时,一定存在唯一一个对未感染区域的威胁最大的区域。
Related Topics
题目解析
- [请一句话描述题目…]
不确定性
方法一:[算法名称]
分析
思路
注意
知识点
复杂度
代码
1 | // |
方法二:[算法名称]
分析
思路
注意
知识点
复杂度
代码
1 | // |